Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-{4-[N,N-Bis(2-chloroethyl)amino]phenyl}-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a.4a-diaza-s-indacene

Mao-Zhong Tian, \$ Shang Gao and Xiao-Jun Peng*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, People's Republic of China Correspondence e-mail: pengxj@dlut.edu.cn

Received 24 May 2007; accepted 20 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.058; wR factor = 0.178; data-to-parameter ratio = 17.8.

In the title compound, C₂₃H₂₆BCl₂F₂N₃, the three borondipyrromethene (BODIPY) fused heterocyclic rings are almost planar [r.m.s. deviation = 0.024 (9) Å]. The dihedral angle between the planes of the benzene ring and the BODIPY fused-ring fragment is 74.9 (8)°. The sp^3 -hybridized B centre appears as a slightly distorted tetrahedron, with N-B-N and F-B-F angles of 106.82 (15) and 109.83 $(17)^{\circ}$, respectively. The two B-N distances in the central ring are almost identical, indicating delocalization of their charge. The two Cl atoms are disordered, with occupancies of approximately 0.85:0.15 and 0.60:0.40.

Related literature

For related literature, see: Stavis et al., (2005); Teske et al., (2006); Yee et al., (2005); Peng et al., (2007); Yu et al., (2007).

Experimental

Crystal data

$C_{23}H_{26}BCl_2F_2N_3$	$\gamma = 90.205 \ (1)^{\circ}$
$M_r = 464.18$	V = 1170.40 (4) Å ³
Triclinic, P1	Z = 2
a = 7.2673 (2) Å	Mo $K\alpha$ radiation
b = 12.3571 (2) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 13.2963 (2) Å	T = 298 (2) K
$\alpha = 92.650 \ (1)^{\circ}$	$0.55 \times 0.35 \times 0.35$
$\beta = 101.089 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 10164 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.178$ S = 1.035337 reflections 299 parameters

5337 independent reflections 3776 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

0.35 mm

13 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.47$ e Å⁻³

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Partial financial support by the Natural Science Foundation of China (grant Nos. 20376010 and 20472012) and the Natural Science Foundation of Liaoning Province (grant No. 2006218) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2028).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Peng, X. J., Du, J. J., Fan, J. L., Wang, J. Y., Wu, Y. Q., Zhao, J. Z., Sun, S. G. & Xu, T. (2007). J. Am. Chem. Soc. 129, 1500-1501.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stavis, S. M., Edel, J. B., Li, Y. G., Samiee, K. T., Luo, D. & Craighead, H. G. (2005). Nanotechnology, 16, S314-S323.
- Teske, C. A., von Lieres, E., Schroder, M., Ladiwala, A., Cramer, S. M. & Hubbuch, J. J. (2006). Biotechnol. Bioeng. 95, 58-66.
- Yee, M., Fas, S. C., Stohlmeyer, M. M., Wandless, T. J. & Cimprich, K. A. (2005). J. Biol. Chem. 280, 29053-29059.
- Yu, Y. H., Shen, Z., Xu, H. Y., Wang, Y. W., Okujima, T., Ono, N., Li, Y. Z. & You, X. Z. (2007). J. Mol. Struct. 827, 130-136.

‡ Present address: Institute of Chemical Engineering, Shanxi Datong University, Datong 037000, People's Republic of China.

Acta Cryst. (2007). E63, o3317 [doi:10.1107/S1600536807030231]

8-{4-[*N*,*N*-Bis(2-chloroethyl)amino]phenyl}-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene

M.-Z. Tian, S. Gao and X.-J. Peng

Comment

Boron-dipyrromethene (BODIPY) dyes are well known and have attracted much interest in the design of fluorescence labels (Stavis *et al.*, 2005; Teske *et al.*, 2006; Yee *et al.*, 2005) and molecular fluorescence sensors (Peng *et al.*, 2007). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties (Yu *et al.*, 2007). As part of our work on BODIPY compounds, we report here the synthesis and crystal structure (Fig.1) of the title compound.

As shown in Fig.1, the main skeleton of the molecule, which is formed from three fused heterocyclic rings, is close to planar with an r.m.s. deviation of 0.024 (9) Å. The maximum deviations from the mean plane for C4, C2 and N1 are 0.043 (3) Å, 0.043 (1) Å and 0.045 (0) Å, respectively. The two B—N bond lengths are nearly the same, indicating delocalization of the charge on them. Due to steric repulsion from the C1 and C10 methyl groups, the phenyl ring is twisted out of the plane of the BODIPY fused-ring system leading to a dihedral angle of 74.9 (8)° between phenyl and BODIPY groups. The two chlorine atoms are disordered with refined major:minor occupancies of 0.851 (8):0.149 (8) and 0.605 (19):0.395 (19) for C11/C11' and C12/C12' respectively.

Experimental

2,4-Dimethylpyrrole (2.16 ml) and 4-[N,N-Bis(2-chloroethyl)amino]benzaldehyde (3.04 g) were added to CH₂Cl₂ (800 ml) in a 1 l round-bottom flask. The mixture was bubbled with N₂ and trifluoroacetic acid (0.19 ml) was added and then stirred for 1.5 h. The resulting solution was washed with 0.1 M NaOH (200 ml) and then water (200 ml), dried over anhydrous Na₂SO₄, and filtered, and the solvent was evaporated on a rotary evaporator. The resultant product was immediately redissolved in toluene (50 ml), and p-chloranil (2.73 g) was added. After the mixture stirred for 10 min, triethylamine (8 ml), and boron trifluoride etherate (7 ml) were added. The mixture was stirred for 1.5 h, poured into water, and extracted with toluene. The toluene solution was extracted three times with 100 ml portions of water, and the solvent was evaporated on a rotary evaporator. The residue was redissolved in chloroform and subjected to silica gel flash column chromatography. Elution with EtOAc/hexane(1:8, v/v) yielded 2.18 g of the title compound (38.03%).

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(\text{methyl C})$.

Figures

Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Both chlorine atoms are disordered with occupancy factors of 0.851 (8):0.149 (8) and 0.605 (19):0.395 (19) for Cl1/Cl1' and Cl2/Cl2' respectively.

8-{4-[N,N-Bis(2-chloroethyl)amino]phenyl}-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene

Crystal data	
$C_{23}H_{26}BCl_2F_2N_3$	Z = 2
$M_r = 464.18$	$F_{000} = 484$
Triclinic, PT	$D_{\rm x} = 1.317 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.2673 (2) Å	Cell parameters from 3630 reflections
<i>b</i> = 12.3571 (2) Å	$\theta = 2.3 - 27.5^{\circ}$
<i>c</i> = 13.2963 (2) Å	$\mu = 0.31 \text{ mm}^{-1}$
$\alpha = 92.650 \ (1)^{\circ}$	T = 298 (2) K
$\beta = 101.089 \ (1)^{\circ}$	Block, brown red
$\gamma = 90.205 \ (1)^{\circ}$	$0.55\times0.35\times0.35~mm$
V = 1170.40 (4) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	3776 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.016$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.3^{\circ}$
ϕ and ω scans	$h = -7 \rightarrow 9$
Absorption correction: none	$k = -16 \rightarrow 15$
10164 measured reflections	$l = -17 \rightarrow 16$
5337 independent reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.178$	$w = 1/[\sigma^2(F_o^2) + (0.0997P)^2 + 0.2019P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
5337 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
299 parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
13 restraints	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

methods Extinction coefficient: 0.029 (4)

Special details

Experimental. ¹H NMR (CDCl₃, 400 MHz, Me₄Si): δ 1.46 (s, 6H, CH₃–H), 2.55 (s, 6H, CH₃–H), 3.66 (t, 4H, ClCH₂–H), 3.78 (t, 4H, NCH₂–H), 5.98 (s, 2H, pyrrole–H), 6.78 (d, 2H, Ar–H), 7.11 (d, 2H, Ar–H). ¹³C NMR (CDCl₃, 400 MHz, Me₄Si): δ 14.76, 14.86, 40.42, 53.62, 112.38, 121.21, 124.01, 129.64, 132.20, 142.37, 143.24, 146.79, 155.26. HRMS (TOF MS EI⁺): 486.1463, calculated: 486.1483.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N1	0.5707 (2)	0.89735 (12)	0.76379 (11)	0.0478 (4)	
N2	0.2896 (2)	0.77838 (13)	0.74161 (11)	0.0489 (4)	
N3	0.5791 (3)	0.64166 (13)	0.21042 (12)	0.0601 (4)	
B1	0.4133 (3)	0.85947 (19)	0.81732 (17)	0.0539 (5)	
F1	0.4908 (2)	0.80832 (12)	0.90633 (9)	0.0805 (4)	
F2	0.30906 (19)	0.94655 (11)	0.84098 (12)	0.0804 (4)	
C1	0.1105 (3)	0.6381 (2)	0.48592 (18)	0.0703 (6)	
H1A	0.1946	0.5808	0.4753	0.105*	
H1B	0.1209	0.6947	0.4403	0.105*	
H1C	-0.0159	0.6103	0.4725	0.105*	
C2	0.1600 (3)	0.68206 (16)	0.59418 (15)	0.0545 (4)	
C3	0.0532 (3)	0.66843 (18)	0.66860 (18)	0.0627 (5)	
H3	-0.0553	0.6261	0.6603	0.075*	
C4	0.1330 (3)	0.72743 (17)	0.75713 (17)	0.0584 (5)	
C5	0.0672 (4)	0.7367 (2)	0.8574 (2)	0.0809 (7)	

H5A	0.1515	0.6987	0.9080	0.121*	
H5B	-0.0564	0.7058	0.8489	0.121*	
H5C	0.0646	0.8117	0.8793	0.121*	
C6	0.7403 (4)	1.0122 (2)	0.91238 (18)	0.0775 (7)	
H6A	0.6195	1.0272	0.9286	0.116*	
H6B	0.8118	1.0784	0.9173	0.116*	
H6C	0.8052	0.9624	0.9598	0.116*	
C7	0.7161 (3)	0.96361 (16)	0.80636 (16)	0.0573 (5)	
C8	0.8329 (3)	0.97433 (17)	0.73636 (18)	0.0627 (5)	
H8	0.9422	1.0162	0.7474	0.075*	
C9	0.7617 (3)	0.91306 (15)	0.64747 (16)	0.0542 (5)	
C10	0.8506 (3)	0.9042 (2)	0.5557 (2)	0.0727 (6)	
H10A	0.7881	0.9512	0.5047	0.109*	
H10B	0.8406	0.8308	0.5282	0.109*	
H10C	0.9805	0.9251	0.5749	0.109*	
C11	0.5935 (2)	0.86418 (14)	0.66511 (13)	0.0456 (4)	
C12	0.4655 (2)	0.79184 (13)	0.60480 (12)	0.0432 (4)	
C13	0.3126 (2)	0.75103 (14)	0.64168 (13)	0.0465 (4)	
C14	0.4939 (2)	0.75405 (14)	0.50174 (13)	0.0457 (4)	
C15	0.4565 (3)	0.81847 (16)	0.41816 (15)	0.0613 (5)	
H15	0.4119	0.8881	0.4266	0.074*	
C16	0.4836 (4)	0.78230 (17)	0.32286 (15)	0.0668 (6)	
H16	0.4575	0.8282	0.2685	0.080*	
C17	0.5494 (3)	0.67820 (15)	0.30565 (13)	0.0496 (4)	
C18	0.5851 (3)	0.61276 (14)	0.39045 (13)	0.0470 (4)	
H18	0.6279	0.5427	0.3823	0.056*	
C19	0.5580(2)	0.65029 (14)	0.48527 (13)	0.0453 (4)	
H19	0.5832	0.6049	0.5400	0.054*	
C20	0.6060 (4)	0.52832 (19)	0.18816 (17)	0.0719 (6)	
H20A	0.7034	0.5016	0.2413	0.086*	
H20B	0.6492	0.5202	0.1236	0.086*	
C21	0.4299 (5)	0.4592 (2)	0.1811 (2)	0.0951 (9)	0.851 (8)
H21A	0.3871	0.4655	0.2459	0.114*	0.851 (8)
H21B	0.4590	0.3838	0.1686	0.114*	0.851 (8)
Cl1	0.24906 (19)	0.49980 (10)	0.08129 (12)	0.0987 (6)	0.851 (8)
C21'	0.4299 (5)	0.4592 (2)	0.1811 (2)	0.0951 (9)	0.149 (8)
H21C	0.4203	0.4416	0.2503	0.114*	0.149 (8)
H21D	0.4479	0.3916	0.1444	0.114*	0.149 (8)
Cl1'	0.2157 (19)	0.5112 (12)	0.123 (2)	0.177 (5)*	0.149 (8)
C22	0.5763 (4)	0.7157 (2)	0.12880 (15)	0.0736 (6)	
H22A	0.4616	0.7571	0.1212	0.088*	
H22B	0.5743	0.6740	0.0650	0.088*	
C23	0.7391 (5)	0.7925 (2)	0.1464 (2)	0.1021 (10)	0.605 (19)
H23A	0.7473	0.8303	0.2127	0.122*	0.605 (19)
H23B	0.7181	0.8460	0.0944	0.122*	0.605 (19)
C12	0.9506 (7)	0.7285 (3)	0.1428 (6)	0.1265 (15)	0.605 (19)
C23'	0.7391 (5)	0.7925 (2)	0.1464 (2)	0.1021 (10)	0.395 (19)
H23C	0.7273	0.8447	0.2014	0.122*	0.395 (19)
H23D	0.7384	0.8317	0.0848	0.122*	0.395 (19)

C12'	0.9593 (12)	0.7225 (7)	0.1794 (12)	0.170 (3)	0.395 (19)
Atomic displacement parameters (\hat{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0511 (8)	0.0480 (8)	0.0430 (8)	-0.0007 (6)	0.0059 (6)	0.0008 (6)
N2	0.0529 (8)	0.0517 (8)	0.0445 (8)	-0.0005 (6)	0.0150 (6)	0.0039 (6)
N3	0.0892 (12)	0.0533 (9)	0.0410 (8)	0.0024 (8)	0.0203 (8)	0.0029 (7)
B1	0.0622 (12)	0.0569 (12)	0.0440 (11)	-0.0007 (10	0.0148 (9)	-0.0005 (9)
F1	0.1003 (10)	0.0957 (10)	0.0423 (6)	-0.0168 (8)	0.0036 (6)	0.0149 (6)
F2	0.0800 (9)	0.0718 (8)	0.0938 (10)	0.0025 (7)	0.0346 (7)	-0.0246 (7)
C1	0.0573 (12)	0.0789 (15)	0.0679 (14)	-0.0061 (10)) -0.0006 (10)	-0.0127 (11)
C2	0.0487 (10)	0.0528 (10)	0.0593 (11)	0.0008 (8)	0.0043 (8)	-0.0003 (8)
C3	0.0516 (10)	0.0631 (12)	0.0741 (14)	-0.0093 (9)	0.0142 (9)	0.0040 (10)
C4	0.0556 (10)	0.0591 (11)	0.0659 (12)	-0.0007 (9)	0.0232 (9)	0.0099 (9)
C5	0.0847 (16)	0.0926 (17)	0.0770 (16)	-0.0041 (13	3) 0.0432 (13)	0.0111 (13)
C6	0.0873 (16)	0.0758 (15)	0.0597 (13)	-0.0107 (12	2) -0.0066 (11)	-0.0098 (11)
C7	0.0585 (11)	0.0505 (10)	0.0580 (11)	-0.0018 (8)	-0.0007 (9)	0.0029 (8)
C8	0.0554 (11)	0.0561 (11)	0.0744 (14)	-0.0096 (9)	0.0063 (10)	0.0081 (10)
C9	0.0535 (10)	0.0471 (9)	0.0644 (12)	0.0005 (8)	0.0146 (9)	0.0136 (8)
C10	0.0698 (13)	0.0726 (14)	0.0854 (16)	0.0000 (11)	0.0348 (12)	0.0221 (12)
C11	0.0486 (9)	0.0443 (9)	0.0446 (9)	0.0035 (7)	0.0097 (7)	0.0075 (7)
C12	0.0484 (9)	0.0419 (8)	0.0401 (8)	0.0069 (7)	0.0095 (7)	0.0068 (7)
C13	0.0488 (9)	0.0461 (9)	0.0441 (9)	0.0017 (7)	0.0081 (7)	0.0015 (7)
C14	0.0514 (9)	0.0458 (9)	0.0402 (9)	0.0040 (7)	0.0096 (7)	0.0037 (7)
C15	0.0917 (15)	0.0483 (10)	0.0467 (10)	0.0224 (10)	0.0180 (10)	0.0097 (8)
C16	0.1033 (17)	0.0577 (11)	0.0420 (10)	0.0247 (11)	0.0165 (10)	0.0169 (8)
C17	0.0630 (11)	0.0492 (9)	0.0375 (9)	0.0041 (8)	0.0115 (8)	0.0038 (7)
C18	0.0576 (10)	0.0406 (8)	0.0430 (9)	0.0049 (7)	0.0097 (7)	0.0030 (7)
C19	0.0518 (9)	0.0435 (9)	0.0403 (9)	0.0020 (7)	0.0067 (7)	0.0088 (7)
C20	0.1028 (17)	0.0660 (13)	0.0484 (11)	0.0183 (12)	0.0199 (11)	-0.0043 (9)
C21	0.149 (3)	0.0555 (13)	0.0733 (16)	-0.0035 (15	5) 0.0061 (17)	-0.0082 (12)
Cl1	0.1037 (8)	0.1132 (8)	0.0763 (8)	-0.0152 (5)	0.0128 (5)	-0.0067 (5)
C21'	0.149 (3)	0.0555 (13)	0.0733 (16)	-0.0035 (15	5) 0.0061 (17)	-0.0082 (12)
C22	0.1150 (19)	0.0703 (14)	0.0382 (10)	0.0052 (13)	0.0203 (11)	0.0079 (9)
C23	0.165 (3)	0.0740 (16)	0.0763 (17)	-0.0158 (18	3) 0.0457 (19)	0.0090 (14)
C12	0.127 (2)	0.1102 (19)	0.155 (3)	-0.0298 (15	5) 0.067 (2)	-0.018 (2)
C23'	0.165 (3)	0.0740 (16)	0.0763 (17)	-0.0158 (18	B) 0.0457 (19)	0.0090 (14)
Cl2'	0.108 (3)	0.194 (5)	0.215 (7)	-0.011 (3)	0.031 (4)	0.092 (5)
Geometric param	neters (Å, °)					
N1—C7		1.352 (2)	C9—C1	1	1.	426 (3)
N1-C11		1.397 (2)	C9—C1	0	1.	486 (3)
N1—B1		1.541 (3)	С10—Н	10A	0.	9600
N2C4		1.354 (2)	С10—Н	10B	0.	9600
N2—C13		1.397 (2)	С10—Н	10C	0.	9600
N2—B1		1.542 (3)	C11—C	12	1.	396 (2)
N3—C17		1.381 (2)	C12—C	13	1.	399 (2)

N3—C20	1.440 (3)	C12—C14	1.479 (2)
N3—C22	1.449 (3)	C14—C15	1.382 (2)
B1—F2	1.377 (3)	C14—C19	1.388 (2)
B1—F1	1.390 (3)	C15—C16	1.374 (3)
C1—C2	1.491 (3)	С15—Н15	0.9300
C1—H1A	0.9600	C16—C17	1.398 (3)
C1—H1B	0.9600	С16—Н16	0.9300
C1—H1C	0.9600	C17—C18	1.402 (2)
C2—C3	1.385 (3)	C18—C19	1.373 (2)
C2—C13	1.425 (3)	C18—H18	0.9300
C3—C4	1.381 (3)	С19—Н19	0.9300
С3—Н3	0.9300	C20—C21	1.521 (4)
C4—C5	1.500 (3)	C20—H20A	0.9700
С5—Н5А	0.9600	С20—Н20В	0.9700
С5—Н5В	0.9600	C21—Cl1	1.771 (3)
С5—Н5С	0.9600	C21—H21A	0.9700
C6—C7	1.485 (3)	C21—H21B	0.9700
C6—H6A	0.9600	C22—C23	1.490 (4)
С6—Н6В	0.9600	C22—H22A	0.9700
С6—Н6С	0.9600	C22—H22B	0.9700
С7—С8	1.385 (3)	C23—Cl2	1.738 (6)
C8—C9	1.385 (3)	C23—H23A	0.9700
C8—H8	0.9300	С23—Н23В	0.9700
C7—N1—C11	108.32 (16)	С9—С10—Н10С	109.5
C7—N1—B1	125.80 (16)	H10A-C10-H10C	109.5
C11—N1—B1	125.78 (15)	H10B-C10-H10C	109.5
C4—N2—C13	108.03 (16)	C12—C11—N1	120.37 (15)
C4—N2—B1	126.30 (16)	C12—C11—C9	131.70 (17)
C13—N2—B1	125.52 (15)	N1—C11—C9	107.89 (16)
C17—N3—C20	120.94 (16)	C11—C12—C13	120.92 (16)
C17—N3—C20 C17—N3—C22	120.94 (16) 120.87 (17)	C11—C12—C13 C11—C12—C14	120.92 (16) 120.12 (15)
C17—N3—C20 C17—N3—C22 C20—N3—C22	120.94 (16) 120.87 (17) 118.14 (17)	C11—C12—C13 C11—C12—C14 C13—C12—C14	120.92 (16) 120.12 (15) 118.92 (15)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1 F1—B1—N1	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1 F1—B1—N1 F2—B1—N2	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1 F1—B1—N1 F2—B1—N2 F1—B1—N2	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1 F1—B1—N1 F2—B1—N2 F1—B1—N2 N1—B1—N2	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C19—C14—C12	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1 F1—B1—N1 F2—B1—N2 F1—B1—N2 N1—B1—N2 C2—C1—H1A	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C19—C14—C12 C16—C15—C14	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17)
C17—N3—C20 C17—N3—C22 C20—N3—C22 F2—B1—F1 F2—B1—N1 F1—B1—N1 F2—B1—N2 F1—B1—N2 N1—B1—N2 C2—C1—H1A C2—C1—H1B	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C19—C14—C12 C16—C15—C14 C16—C15—C14 C16—C15—H15	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2
$\begin{array}{c} C17-N3-C20\\ C17-N3-C22\\ C20-N3-C22\\ F2-B1-F1\\ F2-B1-N1\\ F1-B1-N1\\ F2-B1-N2\\ F1-B1-N2\\ N1-B1-N2\\ C2-C1-H1A\\ C2-C1-H1B\\ H1A-C1-H1B\\ \end{array}$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C19—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 119.2
C17-N3-C20 $C17-N3-C22$ $C20-N3-C22$ $F2-B1-F1$ $F2-B1-N1$ $F1-B1-N2$ $F1-B1-N2$ $F1-B1-N2$ $C2-C1-H1A$ $C2-C1-H1B$ $H1A-C1-H1B$ $C2-C1-H1C$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.5 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C15—C14—C19 C15—C14—C12 C19—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15 C15—C16—C17	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 119.2 121.56 (17)
$\begin{array}{c} C17-N3-C20\\ C17-N3-C22\\ C20-N3-C22\\ F2-B1-F1\\ F2-B1-N1\\ F1-B1-N1\\ F2-B1-N2\\ F1-B1-N2\\ N1-B1-N2\\ C2-C1-H1A\\ C2-C1-H1B\\ H1A-C1-H1B\\ C2-C1-H1C\\ H1A-C1-H1C\\ \end{array}$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.5 109.5 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C15—C14—C19 C15—C14—C12 C19—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15 C15—C16—C17 C15—C16—H16	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 121.56 (17) 119.2
$\begin{array}{c} C17-N3-C20\\ C17-N3-C22\\ C20-N3-C22\\ F2-B1-F1\\ F2-B1-N1\\ F1-B1-N1\\ F2-B1-N2\\ F1-B1-N2\\ F1-B1-N2\\ C2-C1-H1A\\ C2-C1-H1B\\ H1A-C1-H1B\\ C2-C1-H1C\\ H1B-C1-H1C\\ H1B-C1-H1C\\ \end{array}$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.5 109.5 109.5 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15 C15—C16—C17 C15—C16—H16 C17—C16—H16	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 119.2 119.2 119.2
C17-N3-C20 $C17-N3-C22$ $C20-N3-C22$ $F2-B1-F1$ $F2-B1-N1$ $F1-B1-N2$ $F1-B1-N2$ $F1-B1-N2$ $C2-C1-H1A$ $C2-C1-H1B$ $H1A-C1-H1B$ $C2-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $C3-C2-C13$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15 C14—C15—H15 C15—C16—H16 C17—C16—H16 N3—C17—C16	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 119.2 119.2 119.2 119.2 119.2
$\begin{array}{c} C17-N3-C20\\ C17-N3-C22\\ C20-N3-C22\\ F2-B1-F1\\ F2-B1-N1\\ F1-B1-N1\\ F2-B1-N2\\ F1-B1-N2\\ F1-B1-N2\\ C2-C1-H1A\\ C2-C1-H1B\\ H1A-C1-H1B\\ C2-C1-H1C\\ H1B-C1-H1C\\ H1B-C1-H1C\\ H1B-C1-H1C\\ C3-C2-C1\\ \end{array}$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 105.50 (17) 125.10 (19)	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C16—C15—C14 C16—C15—C14 C16—C15—H15 C14—C15—H15 C15—C16—H16 C17—C16—H16 N3—C17—C16 N3—C17—C18	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 121.56 (17) 119.2 119.2 121.94 (16) 121.54 (16)
C17-N3-C20 $C17-N3-C22$ $C20-N3-C22$ $F2-B1-F1$ $F2-B1-N1$ $F1-B1-N2$ $F1-B1-N2$ $F1-B1-N2$ $C2-C1-H1A$ $C2-C1-H1B$ $H1A-C1-H1B$ $C2-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $C3-C2-C1$ $C3-C2-C1$ $C13-C2-C1$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15 C15—C16—H16 C17—C16—H16 N3—C17—C18 C16—C17—C18	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 119.2 119.2 119.2 119.2 119.2 119.2 121.94 (16) 121.54 (16) 116.52 (16)
C17-N3-C20 $C17-N3-C22$ $C20-N3-C22$ $F2-B1-F1$ $F2-B1-N1$ $F1-B1-N2$ $F1-B1-N2$ $F1-B1-N2$ $C2-C1-H1A$ $C2-C1-H1B$ $H1A-C1-H1B$ $H1A-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $C3-C2-C1$ $C13-C2-C1$ $C4-C3-C2$	120.94 (16) 120.87 (17) 118.14 (17) 109.83 (17) 110.24 (17) 109.69 (17) 110.44 (17) 109.78 (17) 106.82 (15) 109.5 109.	C11—C12—C13 C11—C12—C14 C13—C12—C14 N2—C13—C12 N2—C13—C2 C12—C13—C2 C15—C14—C19 C15—C14—C12 C16—C15—C14 C16—C15—H15 C14—C15—H15 C15—C16—C17 C15—C16—H16 C17—C16—H16 N3—C17—C16 N3—C17—C18 C16—C17—C18 C19—C18—C17	120.92 (16) 120.12 (15) 118.92 (15) 120.45 (16) 108.03 (16) 131.52 (17) 117.18 (16) 122.32 (15) 120.50 (15) 121.69 (17) 119.2 119.2 121.56 (17) 119.2 121.94 (16) 121.54 (16) 121.52 (16) 121.19 (16)

С2—С3—Н3	125.3	C17—C18—H18	119.4
N2-C4-C3	109.04 (18)	C18—C19—C14	121.86 (15)
N2—C4—C5	122.6 (2)	С18—С19—Н19	119.1
C3—C4—C5	128.32 (19)	С14—С19—Н19	119.1
С4—С5—Н5А	109.5	N3—C20—C21	113.8 (2)
C4—C5—H5B	109.5	N3—C20—H20A	108.8
H5A—C5—H5B	109.5	C21—C20—H20A	108.8
C4—C5—H5C	109.5	N3—C20—H20B	108.8
H5A—C5—H5C	109.5	С21—С20—Н20В	108.8
H5B—C5—H5C	109.5	H20A—C20—H20B	107.7
С7—С6—Н6А	109.5	C20—C21—C11	111.20 (19)
С7—С6—Н6В	109.5	C20—C21—H21A	109.4
H6A—C6—H6B	109.5	Cl1—C21—H21A	109.4
С7—С6—Н6С	109.5	C20—C21—H21B	109.4
Н6А—С6—Н6С	109.5	Cl1—C21—H21B	109.4
H6B—C6—H6C	109.5	H21A—C21—H21B	108.0
N1—C7—C8	108.81 (18)	N3—C22—C23	113.8 (2)
N1—C7—C6	123.2 (2)	N3—C22—H22A	108.8
C8—C7—C6	128.0 (2)	C23—C22—H22A	108.8
C9—C8—C7	109.43 (18)	N3—C22—H22B	108.8
С9—С8—Н8	125.3	C23—C22—H22B	108.8
C7—C8—H8	125.3	H22A—C22—H22B	107 7
C8—C9—C11	105 54 (17)	$C_{22} = C_{23} = C_{12}$	112.9 (2)
C8—C9—C10	124 60 (19)	C22—C23—H23A	109.0
$C_{11} - C_{9} - C_{10}$	129.86 (19)	Cl_2 Cl_2 H_23A	109.0
C9—C10—H10A	109.5	C22—C23—H23B	109.0
C9—C10—H10B	109.5	Cl2C23H23B	109.0
H10A—C10—H10B	109.5	H23A-C23-H23B	107.8
	(4.4.(2))	N1 C11 C12 C14	177.00 (14)
C = NI = BI = F2	04.4(2)	N1 = C11 = C12 = C14	-1/7.88(14)
C11—N1—B1—F2	-119.52(19)	$C_{9} = C_{11} = C_{12} = C_{14}$	-0.7(3)
C = NI = BI = FI	-50.7(2)	C4 = N2 = C13 = C12	-1/9.44(10)
CII - NI - BI - FI	119.42 (16)	BI = N2 = C13 = C12	4.9 (3)
C = NI = BI = N2	-1/5.00(10)	C4 = N2 = C13 = C2	1.3 (2)
C11—N1—B1—N2	0.5 (2)	BI = N2 = CI3 = C2	-1/4.41(1/)
C4 - N2 - B1 - F2	-58.5(3)	C11 - C12 - C13 - N2	-2.8(2)
C13—N2—B1—F2	116.38 (19)	C14 - C12 - C13 - N2	175.01 (15)
C4 - N2 - B1 - F1	62.7 (3)	C11 - C12 - C13 - C2	1/6.29 (18)
C13-N2-B1-F1	-122.37 (19)	C14 - C12 - C13 - C2	-5.9 (3)
C4—N2—BI—NI	-1/8.40 (1/)	C_{3} — C_{2} — C_{13} — N_{2}	-1.4 (2)
CI3—N2—BI—NI	-3.5 (2)	C1—C2—C13—N2	174.43 (19)
C13—C2—C3—C4	1.1 (2)	C3—C2—C13—C12	179.38 (18)
C1 - C2 - C3 - C4	-175.0(2)	C1—C2—C13—C12	-4.8 (3)
C13—N2—C4—C3	-0.6 (2)	C11—C12—C14—C15	-/6.0 (2)
B1—N2—C4—C3	175.05 (18)	C13—C12—C14—C15	106.2 (2)
C13—N2—C4—C5	178.77 (19)	C11—C12—C14—C19	104.8 (2)
B1—N2—C4—C5	-5.6 (3)	C13—C12—C14—C19	-73.0 (2)
C2—C3—C4—N2	-0.3 (2)	C19—C14—C15—C16	-0.8 (3)
C2—C3—C4—C5	-179.7 (2)	C12—C14—C15—C16	180.0 (2)
C11—N1—C7—C8	0.2 (2)	C14—C15—C16—C17	0.4 (4)

B1—N1—C7—C8	176.89 (18)	C20-N3-C17-C16	-166.0 (2)
C11—N1—C7—C6	-178.47 (18)	C22—N3—C17—C16	11.4 (3)
B1—N1—C7—C6	-1.8 (3)	C20-N3-C17-C18	14.5 (3)
N1	-0.5 (2)	C22—N3—C17—C18	-168.2 (2)
C6—C7—C8—C9	178.2 (2)	C15-C16-C17-N3	-179.2 (2)
C7—C8—C9—C11	0.5 (2)	C15-C16-C17-C18	0.3 (3)
C7—C8—C9—C10	-179.54 (19)	N3-C17-C18-C19	178.95 (18)
C7—N1—C11—C12	177.82 (16)	C16-C17-C18-C19	-0.6 (3)
B1—N1—C11—C12	1.2 (3)	C17-C18-C19-C14	0.1 (3)
C7—N1—C11—C9	0.07 (19)	C15-C14-C19-C18	0.5 (3)
B1—N1—C11—C9	-176.60 (17)	C12-C14-C19-C18	179.77 (16)
C8—C9—C11—C12	-177.74 (18)	C17—N3—C20—C21	69.8 (3)
C10-C9-C11-C12	2.3 (3)	C22—N3—C20—C21	-107.6 (2)
C8—C9—C11—N1	-0.3 (2)	N3-C20-C21-Cl1	61.2 (2)
C10-C9-C11-N1	179.69 (19)	C17—N3—C22—C23	69.9 (3)
N1-C11-C12-C13	-0.1 (2)	C20—N3—C22—C23	-112.6 (3)
C9—C11—C12—C13	177.05 (18)	N3—C22—C23—Cl2	67.2 (4)

Fig. 1

